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Mass Spectroscopy of Protein Complexes: 101

ionization

ions accelerate towards
charged slit

magnetic field:
deflection depends on
mass/charge ratio

ion separation yields
mass/charge (m/z) spectrum

molecules: sprayed
from solution
to gas sample

. Analyzing a mixture of sub-complexes: a three step process

(1) Mass spectrometry yields a m/z spectrum
(2) Processing the m/z spectrum yields a mass spectrum
(3) Decomposing an individual mass yields the list of proteins in a sub-complex

. Generating a mixture of sub-complexes by varying the chemical conditions

– Stringent conditions: full decomposition yields isolated proteins
– Milder conditions: overlapping complexes (oligomers)

.Ref: Taverner, Robinson et al; Accounts of chemical research; 2008



Checkpoint

. Consider an oligomer of size 4, involving four different proteins.

. In how many different ways can it be connected?



The Lego Example
. Reconstruction contacts for an assembly of five proteins, given three
complexes of size three

. Comments about Minimum connectivity:

I The pool of candidate edges is defined by the oligomers

I MCI yields a well posed problem

I MCI avoids speculating on the number of contacts

I Solutions in general not unique



Minimum Connectivity Inference: Problem Specification
Find a graph

with minimum number of edges

such that the induced graph

associated with each vertex set
is connectedGiven

– a connected graph
vertex set: known
edge set: unknown

– a list of vertex sets
corresponding to
connected subgraphs of that graph

. Formal specification:
– Input:

A set V of vertices (Vertex: protein)
A set C of vertex sets {Vi ⊂ V }, i ∈ I (Vertex set: protein sub-complex)

– Goal: Find a graph G = (V ,E), (Edge: protein contact)
with E of minimal cardinality

– Constraints: the induced graph Vi [E ] is connected, ∀i ∈ I

. NB: edges of the complete graph on V : E

. Previous work: Network Inference algorithm by Robinson et al.

.Ref: Taverner, Robinson et al; Accounts of chemical research; 2008
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Hardness: Overview

. Decision version of the Connectivity Inference problem:

Inputs: Set V of vertices (proteins)
Set of subsets C = {Vi | Vi ⊂ V and i ∈ I} (complexes)
Integer k > 0 (budget)

Constraints: Given G = (V ,E): the induced graph G [Vi ] is connected
∀i ∈ I

Question: Does there exist a feasible edge set E such that |E | ≤ k?

. Using a reduction of the Set Cover problem:

I The decision version of the Connectivity Inference problem is NP-complete

I Minimum Connectivity Inference is APX-hard
∃µ > 0 such that approximating MCI within 1 + µ is NP-hard



Mixed Integer Linear Programming (MILP) Formulation

. Objective function minimizing the number of edges:

∀e ∈ E , consider ye ∈ Z2 : min
∑
e∈E

ye

. Formulation uses flow variables on arcs (oriented edges):

∀i ∈ I and u, v ∈ V : f i
uv , f

i
vu ∈ R+

. Constraints:

I Connectivity of the ith complex: some si ∈ Vi expels |Vi | − 1 units of
flow, each other vertex collecting one unit∑

a∈A+
i (u)

f i
a −

∑
a∈A−i (u)

f i
a =

{
|Vi | − 1 if u = si

−1 if u 6= si

I Arc capacity

f i
uv ≤ |Vi | · yuv

f i
vu ≤ |Vi | · yuv

}
∀i ∈ I , ∀e = uv ∈ E

. An edge is selected if one of its two arcs carries some positive flow



MILP: Enumerating all Optimal Solutions

. MILP and decision problem: replace the objective function by
∑

e∈E ye ≤ k

. Incremental constraint generation for solution enumeration:

I E` is the `-th solution (set of edges)

I The solution E` gets excluded when adding the constraint∑
e∈E`

ye ≤ |E`| − 1

. SMILP: ensemble of optimal solutions reported by MILP

while MILP has a feasible solution E` s.t. |E`| ≤ OPT do
Add E` to SMILP

Add constraint
∑

e∈E`
ye ≤ |E`| − 1 to MILP

return SMILP

. NB: can also be used to report all solutions with at most k edges



Approximation Strategy: Greedy Algorithm

. Greedy: iteratively pick the edge best at reducing
the number of connected components, across all complexes
→ priority of edge e: # of c.c. merged upon picking e

v1v2

v3
v4

v5

Complex #1

v1v2

v3
v4

v5

Complex #2
v1v2

v3
v4

v5

Complex #3
v1 : 1, 2, 3v2 : 1, 2, 3

v3 : 1
v4 : 2

v5 : 3

Complexes as colors

3

1 1

1 1

1 1

. Thm. Greedy yields a 2 log2(
∑

i∈I |Vi |)-approximation

. Implementation: priority queue + Union-Find data structures

queue: to select the edge with best priority
union-find data structures: maintaining the disjoint sets



Greedy Analysis (I)
. Notations:

– Edge set incrementally built: E t ⊂ E , with E 0 = ∅
yields the graph G t = (V ,E t)

– Induced graph associated to a complex: Vi [E
t ]

# connected components of Vi [E
t ]: |Vi [E

t ]|

Definition (Priority of edge e w.r.t. F ⊂ E)
Number of c.c. that get merged upon selecting e:

priority(e,F ) =
∑
i∈I

|Vi [F ]| −
∑
i∈I

|Vi [F ∪ {e}]|

. Trivial fact : The priority of an edge decreases along time.

OPT ≥
∑

i∈I |Vi [∅]|
Maxe∈Epriority(e, ∅)

Lemma

∀F ⊂ E : OPT ≥
∑

i∈I |Vi [F ]|
Maxe∈Epriority(e,F )



Greedy Analysis (II)

. Edge selected matches the best priority i.e.

emax(t) = max
e∈E

priority(e,E t)

. Phase: sequence of steps t, t + 1, . . . , t′ with emax(t′) ≥ 1
2
emax(t)

. During a phase :

- We merge at least 1
2
emax(t)× (t′ − t) components.

This yields the following lower bound on the # of c.c. at time t:
=⇒

∑
i∈I |Vi (E t)| ≥ 1

2
emax(t)× (t′ − t)

- And by the previous lemma: OPT ≥ 1
2
(t′ − t)

During a phase we pay at most twice the optimal

. Priority is halved at each phase: #phases ≤ log2(
∑

i∈I |Vi |)

=⇒ 2log2(
∑

i∈I |Vi |) approximation
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Example Complexes Under Scrutiny

. Yeast exosome
exonuclease complex involved in RNA processing and degradation
10 distinct proteins: RNA processing and degradation
Input from mass spectrometry: 21 vertex sets

. Yeast 19S proteasome lid
Proteasomes: elimination of damaged / misfolded / short-lived proteins
9 distinct proteins: degradation of damaged or misfolded proteins
Input from mass spectrometry: 14 vertex sets

. Yeast exosome: crystal structure

Side view

Top view

. Proteasome lid: cryo EM map

Rpn9

Rpn5

Rpn6

Rpn8 Rpn12

Rpn3

Sem1

Rpn7



Assessing a Solution Set:
Comparing predicted edges versus experimentally observed protein contacts

. Consider a contact (vi , vj) from solution S ∈ SMILP: true or false positive?

→ assessing a contact requires an exhaustive - reference set of contacts ERef

. Reference contact sets from various experiments
[Crystallography] CXtal

[Bio-chemistry] CDim: (TAP, etc)
[Cross-linking] CXL

[Combined] CXtal ∪ CDim ∪ CXL

Side view

Top view



Assessing a Solution Set S ⊂ SMILP w.r.t. ERef
S ∈ S

(vi, vj)
0/1

precision of the solution S

score of the contact

Solutions
Contacts

0/1

score of a solution

. Precision with respect to the reference set of contacts ERef

– precision of solution S ∈ S wrt ERef: PMILP;ERef (S) = |S ∩ ERef|
→ precision is maximum if S ⊂ ERef i.e. no false positive

– precision PMILP;ERef (S) of an ensemble of solutions S:
(min, median,max) of the precisions of the solutions S ∈ S

. Scores for contacts and solutions
– score of a contact: # solutions from S it belongs to
– signed score of contact: score ×± 1 depending on whether true/false positive

. Scores for contacts and consensus solutions:
– score of a solution S ∈ S: the sum of the scores of its contacts
– consensus solutions Scons.

MILP : solutions achieving the maximum score



Signed Scores for Contacts and Solutions in SMILP

. Exosome (ERef = CXtal): scores for solutions and signed contact scores
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. Proteasome (ERef): signed contact scores, and scores for solutions
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. Take-home message: very few false positives ... and yet for good reasons.



Parsimony and Precision for Individual Solutions in SMILP:
Yeast Exosome

. Algorithm NI : genetic algorithm by Robinson et al.

Complex #types ERef |ERef| |SNI| PNI;ERef
(SNI)

Exosome 10 CXtal 26 12 12
19S Lid 9 CCryo ∪ CDim ∪ CXL 19 9 (NC∗) 8

eIF3 12 CCryo ∪ CDim ∪ CXL 17 17∗∗ 14

. MILP
Complex #types ERef |ERef| |SMILP| |SMILP| PMILP;ERef

(SMILP) |Scons.MILP| PMILP;ERef
(Scons.MILP)

Exosome 10 CXtal 26 10 1644 (7, 9, 10) 12 (8, 9, 10)
19S Lid 9 CCryo ∪ CDim ∪ CXL 19 10 324 (7, 8, 10) 18 (8, 9, 10)

eIF3 12 CCryo ∪ CDim ∪ CXL 17 13 180 (8, 10, 12) 36 (9, 10, 11)

. Greedy
Complex #types ERef |ERef| |SG| |SGreedy| PGreedy;ERef

(SGreedy) |Scons.Greedy | PGreedy;ERef
(Scons.Greedy )

Exosome 10 CXtal 26 10 756 (7, 9, 10) 756 (7, 9, 10)
19S Lid 9 CCryo ∪ CDim ∪ CXL 19 10 324 (7, 8, 10) 18 (8, 9, 10)

eIF3 12 CCryo ∪ CDim ∪ CXL 17 13 108 (9, 10, 12) 36 (9, 10, 11)

. Take-home message:

– MILP is more parsimonious than NI
– more than 80% of edges in consensus solutions: true positives



Precision for the Union of Solutions in SMILP
. For each protein: union of neighborhood versus contacts in the assembly
. Symmetric difference between two sets S and R:

S∆sR = (|S\R|, |S ∩ R|, |R\S |). (1)

. Applied to the union of neighborhoods vs reference contacts:

N(p,SA)∆sN(p,R) ≡ (
⋃

S∈SA

N(p, S))∆sN(p,R) (2)

. Results (false positives, true positives, missed contacts)

Protein Ref. Degree N(p,S)∆sN(p,R)

Dis3 4 (1, 4, 0)
Rrp4 5 (2, 3, 2)

Rrp43 6 (3, 6, 0)
Rrp45 7 (2, 6, 1)
Rrp46 5 (0, 4, 1)
Rrp41 4 (2, 4, 0)
Rrp40 4 (0, 3, 1)
Csl4 6 (2, 4, 2)

Rrp42 5 (2, 5, 0)
Mtr3 6 (0, 3, 3)
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Outlook

. Structural Biology
– Mass spec. for protein complexes: about to revolutionize structural biology
→ reference algorithms for connectivity inference

– Excellent agreement with experimental data
– Solutions more parsimonious than previously computed ones
– For current examples: MILP always succeeds
– Software: about to be released (MILP , Greedy )

. Computer science: selected open questions
– MILP has a hard time to outperform Greedy: is the approx. factor tight?
– Structure of the solution set depending on

structural properties of the unknown graph (min cuts)
structure of the Hasse diagram of vertex sets (hierarchical vs flat)

– Problem size: moving from ∼ 10 to ≤ 500 vertices
multiplicity issues appear : multiples copies per protein

– Beyond topological information: 3D embedding of the solutions?
minimum connectivity, degree of nodes
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Greedy Geometric Algorithms for Collections of Balls,
with Applications to

Geometric Approximation and Molecular Coarse-Graining

F. Cazals and T. Dreyfus and S. Sachdeva and N. Shah

(B) Outer (C) Interpolated(A) Inner
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Separating the Molecules: Finding (Thick) Cracks Within a Map

. NPC: probability density maps . Cryo-EM density maps

. Antelope canyon, AZ, USA



Checkpoint

. Consider a planar domain D defined by a simple curve. To cover domain D
with balls, where should these balls be centered?



Coarse Graining with a Fixed Budget of k balls: Overview

. Three approximation problems of a given input shape:
– inner approximation with largest volume
– outer approximation with least extra volume
– volume preserving approximation

. From crystal structure: inner / outer / interpolated approximations

3sgb (1690 atoms), approximated with 85 balls (5% of atoms)

(B) Outer (C) Interpolated(A) Inner

. NB: weighted versions accommodated too



Coarse Graining with a Fixed Budget of k balls: Problems

. Input: FO defined by a union of n balls

. Output: k < n balls defining the approximation FS

. Three problems:

I inner approximation: FS ⊂ FO
I outer approximation: FO ⊂ FS
I interpolated approximation: an approximation sandwiched between the

inner and outer approximations.

I Volume preserving approximation: Vol(FS) = Vol(FO)

P2

P3

P1

P2

P3

P1



Modeling Contacts in Macro-molecular Assemblies

Problem Statement

Results

Algorithm

Outlook



Greedy Assessment: Volume Covered
Incidence of the Topology

. Input domain versus domain of the selection: volume comparisons
F r
O: input balls expanded by a quantity r
→ r = 0: input model

F r
S : domain of the selection for the expanded model

Assessment: Vol(F r
S)/Vol(F r

O) for increasing r

. PDB code 1igt: 1690 balls . PDB 1igt: 10416 balls



Greedy Assessment: (Signed) Hausdorff Distance
. Signed dist. of point p w.r.t. compact domain F :

s(p, ∂F) =

{
−minq∈∂F d(p, q) if p ∈ F ,
+ minq∈∂F d(p, q) otherwise,

. Distance between boundaries: input domain ∂FO vs selection ∂FS :

SH(∂FO, ∂FS) = [ min
p∈∂FS

s(p, ∂FO), max
p∈∂FS

s(p, ∂FO); min
p∈∂FO

s(p, ∂FS), max
p∈∂FO

s(p, ∂FS)]

Input

Approx.

d1

d2d3

d4

. Assessment on a set of 96 protein complexes (1008 -13214 atoms)



Volume Preserving Approximations: Results

e k/n d1 d2 d3 d4

rw 0.01 −8.39± 1.76 7.26± 1.74 −6.12± 1.77 5.54± 1.38

rw 0.02 −7.64± 1.76 5.46± 1.11 −7.11± 2.41 4.89± 1.63

rw 0.05 −5.61± 1.63 2.94± 0.85 −7.43± 2.38 4.76± 2.44

rw 0.10 −4.05± 1.71 2.77± 1.52 −7.80± 1.80 5.25± 2.23

rw mean −6.48± 2.42 4.66± 2.30 −7.10± 2.21 5.11± 1.98

5.6 0.01 −3.17± 0.88 3.49± 0.34 −4.36± 0.78 2.43± 0.24

5.6 0.02 −2.25± 1.54 2.58± 0.22 −3.55± 0.61 1.49± 0.15

5.6 0.05 −0.91± 0.35 1.68± 0.14 −2.77± 1.11 0.65± 0.91

5.6 0.10 −0.38± 0.12 1.08± 0.13 −1.68± 0.47 0.28± 0.07

5.6 mean −1.92± 1.44 2.41± 0.89 −3.33± 1.20 1.38± 0.94

. Take home message: with a number of balls ∼ 5% of atoms

molecular volume exactly preserved
distance between surfaces ∼ 2− 3 atoms (SAS model)
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Medial Axis and Relatives

. For any open set R ⊂ Rn:

I Medial axis: points with at least
two nearest neighbors in R

I Skeleton: centers of maximal balls

I Singular set: points where the
distance function is not
differentiable

. For a smooth curve/surface:

MA ⊂ Skeleton

. Skeleton and local thickness:

I Local: curvature properties

I Global: related to
bi/tri/tetra-tangent balls

.Medial axis transform: MAT

A2
1

A3

A3
1

C



Max k-cover and the Greedy Strategy

. max k-cover:
A: alphabet of m
C: collection of subsets of A

Select k subsets from C
maximizing the number of points
from A which are covered

. Hardness:
– problem is NP-complete
– OPT cannot be approximated within 1− 1/e + ε

unless P = NP
– Greedy algorithms achieve the 1− 1/e bound

.Ref: Feige; J. ACM; 1998

. Greedy may fail:

A5

4
A6

4

A3

2
A4

2

A1

1
A2

1

C3

8

C2

4

C1

2

C4

7
C5

7

Greedy: C3 + C2 = 12
OPT: C4 + C5 = 14



Geometric Max k-cover for Balls

. Medial axis of the domain FO, associated covering FC , and induced
arrangement of balls A

c1

c2 c3

c4

c5
c6

c7

m1

m2

1

2
3

1

2

3 4

. Given a function defined on the cells of A:
– Maximize the weight of a selection of k cells
– Two cases: volume vs surface arrangements

For the latter: cf role of the MA w.r.t. FC = ∪iBi

. Complexity: geometric versions of max k-cover

.Ref: Amenta, Kolluri; CGTA; 2001

.Ref: Feige; J. ACM; 1998



Inner Approximation

. Punchline:
– The first provably correct volume-based approximation algorithm of 3D shapes,

which works in a finite setting (6= the ε-sample framework)

. Thm. The MAT of a union of balls is discrete in the following sense:

FC =
⋃
i

Bi =
⋃
v∈V

B∗v . (3)

with V the vertices of the medial axis.

. Corr. The 3D arrangement induced by balls in V can be used to run greedy
algorithms.

. Thm. The Greedy strategy for positive volume weights has the following
approximation ratios:{

1− (1− 1/k)k > 1− 1/e wrt to OPT weight (volume)

1− (1− 1/n)k wrt the total weight (volume)
(4)

. Obs. The Greedy strategy for positive surface weights can be as bad ad 1/k2.

.Ref: Cazals, Dreyfus, Sachdeva, Shah; Comp. Graphics Forum, 2014



Robust Implementation of Greedy for the Volume Case:
A High-profile Implementation

. Delaunay triangulation (DT) DTB of the input balls

. Delaunay triangulation DTV of the boundary points of ∂FC
– Points have degree two algebraic coordinates
– Degeneracies to be handled (e.g. n > 3 coplanar points)

. Medial axis of the input balls
– Voronoi diagram DTV ∗ clipped by the α-shape of DTB

. MAT restricted to vertices of the MA

. Volume computations to run greedy

.Ref: De Castro and F. Cazals and S. Loriot and M. Teillaud; CGTA; 2009

.Ref: Cazals and H. Kanhere and S. Loriot; ACM TOMS; 2011
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Outlook

. Pros
Flexible framework to design approximations

Inner / outer / volume preserving approximations
The molecule or complex can be processed as a whole

or can be decomposed into regions processed independently

. Geometric models produced can be complemented by
Connectivity information
Biophysical properties



References

I F. Cazals and T. Dreyfus and S. Sachdeva and N. Shah, Greedy
Geometric Algorithms for Collections of Balls, with Applications to
Geometric Approximation and Molecular Coarse-Graining, Computer
Graphics Forum, 2014.
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Assessing the Reconstruction
of Macro-molecular Assemblies

with Toleranced Models

Frederic Cazals, Tom Dreyfus, Inria ABS
Valerie Doye, Inst. J. Monod

Algorithms - Biology - Structure project-team
INRIA Sophia Antipolis France
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Structural Dynamics of Macromolecular Processes
Reconstructing Large Macro-molecular Assemblies

rotary propeller

Bacterial flagellum

nucleocytoplasmic transport

Nuclear Pore Complex Branched actin filaments

muscle contraction, cell division

Chaperonin cavity

protein folding

Maturing virion

HIV-1 core assembly

ATP synthase

synthesis of ATP

in mitoch. and chloroplasts

– Molecular motors
– NPC
– Actin filaments
– Chaperonins
– Virions
– ATP synthase

. Difficulties

Modularity
Flexibility

. Core questions

Reconstruction / animation
Integration of (various) experimental data

Coherence model vs experimental data

.Ref: Russel et al, Current Opinion in Cell Biology, 2009



Reconstructing Large Assemblies:
a NMR-like Data Integration Process

. Four ingredients
– Experimental data
– Model: collection of balls
– Scoring function: sum of restraints

restraint : function measuring the agreement
�model vs exp. data�

– Optimization method (simulated annealing,. . . )

. Restraints, experimental data and . . . ambiguities:

Assembly : shape cryo-EM fuzzy envelopes
Assembly : symmetry cryo-EM idem
Assembly : sub-systems mass spec. stoichiometry
Complexes: : interactions TAP (Y2H, overlay assays) stoichiometry
Instance: : shape Ultra-centrifugation rough shape (ellipsoids)
Instances: : locations Immuno-EM positional uncertainties

.Ref: Alber et al, Ann. Rev. Biochem. 2008 + Structure 2005



Checkpoint

. Consider a real valued function:

f (x , y , z) : R3 −→ R (5)

What is, in general, the locii of point defined as follows:

S = {p = (x , y , z) ∈ R3 | f (p) = c} (6)



Morse Homology: Illustration
. Example: evolving homology of a 3D landscape defined by a polynomial

P =
(
x2 + y2 + z − 1

)2
+
(
z2 + y2 + x − 3

)2
+
(
x2 + z2 + y − 2

)2

CP#8, index 1: (1, 0, 0) −→ (1, 1, 0)

CP#9, index 2: (1, 1, 0) −→ (1, 0, 0)

. Key construction: the Morse-Smale(-Witten) chain complex i.e.
the connections between critical points whose indices differ by one

is sufficient to compute the Betti numbers

.Ref: R. Tom, Sur une partition en cellules...; CRAS; 1449

.Ref: S. Smale; Differentiable dynamical systems; Bull. AMS; 1967

.Ref: R. Boot, Morse theory indomitable, Pub. IHES, 1988



Uncertain Data and Toleranced Models:
the Example of Molecular Probability Density Maps

. Probability Density Map of a Flexible Molecule
– Each point of the probability density map:

probability of being covered by a conformation

. Question:
How does one accommodate high/low

density regions?

. Toleranced ball Si

– Two concentric balls of radius r−i <r +
i :

inner ball Si [r
−
i ]: high confidence region

outer ball Si [r
+
i ]: low confidence region

. A continuum of models
– Linear interpolation of radii: ri (λ) =r−i +λ(r +

i −r−i )

– Tracking intersections of Si [ri (λ)]:
→ Voronoi diagram of toleranced balls
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Voronoi diagrams in Biology, Geology, Engineering

V or(B7)

V or(B5)

V or(B6)

V or(B2)
V or(B4)

V or(B3)

V or(B1)

c1

c3

c4

c2
c6

c5

c7

.Ref: Cazals, Dreyfus; Symp. on Geometry Processing, 2010



The α-complex: Demo

VIDEO/ashape-two-cc-cycle-video.mpeg

. α-complex
– simplicial complex encoding the topology of growing balls
– multi-scale analysis of a collection of balls

how many clusters / clusters’ stability?
topology of the clusters?



Euclidean Voronoi diagram and α-complex

. Voronoi diagram of S = {xi}
– Voronoi region Vor(xi ):
{p | d(p, xi ) < d(p, xj), i 6= j}

. Dual complex K(S)
– Delaunay triangulation (Euclidean case)
– Simplex ∆: dual of

⋂
xi∈∆ Vor(xi ) 6= ∅

. α-complex Kα(S)
– Grown spheres:

Si,α = Si (xi , α)
– Restricted Voronoi region:

Ri,α = Si,α ∩ Vor(xi )
– ∆ ∈ Kα(S):⋂

xi∈∆ Ri,α 6= ∅

. α-complex: topological changes
induced by a growth process

x1 x2

x1 x2

x3

x3

x1 x2

x3

x1 x2

x3



Growth Processes and Curved Voronoi diagrams

. Power diagram:
d(S(c, r), p) = ‖c − p‖2 − r2

. Mobius diagram:
d(S(c, µ, α), p) = µ‖c − p‖2 − α2

. Apollonius diagram:
d(S(c, r), p) = ‖c − p‖ − r

∆1(2, 3, 4)

∆2(2, 3, 4)

∆1(2, 5, 6)

∆2(2, 5, 6)

∆2(4)

∆1(4)

∆(1)

∆(5)

∆(3)

∆(6)

∆(7)

∆1(1, 3, 4)

∆1(1, 2, 4)

∆2(1, 2, 4)
∆2(1, 3, 4)

∆(2)

. Compoundly Weighted Voronoi diagram:
d(S(c, µ, α), p) = µ‖c − p‖ − α

.Ref: Boissonnat, Wormser, Yvinec; in Effective Comp. Geom.; 2006



Modeling Contacts in Macro-molecular Assemblies

Introduction

Voronoi Diagrams

Compoundly Weighted Voronoi Diagrams and their λ-Complex

Assessing the Reconstruction of Macro-Molecular Assemblies

Probing assemblies With Graphical Models

Conclusion and Perspectives



From Toleranced Balls to Compoundly Weighted Points
and Compoundly Weighted Voronoi Diagrams

. Toleranced ball Si (ci ;r
−
i ;r +

i ) and radius interpolation:
– Radius discrepancy: δi =r +

i −r−i
– Grown ball Si [λ](ci , ri (λ)) with ri (λ) = r−i + λδi

. Growing ball swallowing a point p:
– p is at the surface of Si [λ]
⇔ ri (λ) =|| cip ||
⇔ λ =

||ci p||−r−i
δi

. From Toleranced Ball to Compoundly Weighted Point:

– Si (ci ;µi = 1
δi
, αi =

r−i
δi

)

– λ(Si , p) = 1
δi
|| cip || −

r−i
δi

ci

r−i

r+i

p
ri(λ)

The Voronoi Diagram induced by Toleranced Balls is the Compoundly Weighted one !



Bisectors

. Rationale from the Euclidean Voronoi diagram:
– Bisector ζi,j of (xi , xj)

centers of circumscribed balls to xi and xj

. Generalization to the CW case:

– Bisector ζi,j of (Si , Sj)
centers of toleranced tangent balls to

Si and Sj

⇒ degree four algebraic surface
– Extremal toleranced tangent balls

smallest one of radius ρ

⇒ first intersection of Si0 [ρ], . . . , Sik [ρ]

largest one of radius ρ

⇒ last intersection of Si0 [ρ], . . . , Sik [ρ]

xi

xj

ζi,j

Si
Sj

ζi,j



Voronoi Diagram and its Dual Complex:
Topological Complications

. Partition of the ambient space:
Vor(Si ) = {p ∈ R3 | λ(Si , p) ≤ λ(Sj , p)}

. Voronoi region – in all generality:
– Neither connected : collection of faces
– Nor simply connected

. Dual complex:
– Not a triangulation
→ abstract representation with a Hasse diagram

– abstract edges without triangle
Hole in Voronoi region

Ex. (Top): ∆(1, 3)
– 6= abstract triangles sharing two edges

Lens sandwiched Voronoi region (Apollonius case)
Ex. (Top): ∆1(0, 1, 2) and ∆2(0, 1, 2)

– 6= abstract triangles sharing the same edges
Composed hole in Voronoi region

Ex. (Bottom): ∆1(1, 4, 5) and ∆2(1, 4, 5)

∆(0)

∆(2)

∆(1)

∆(3)

∆1(2, 3, 4)

∆2(2, 3, 4)

∆1(2, 5, 6)

∆2(2, 5, 6)

∆2(4)

∆1(4)

∆(1)

∆(5)

∆(3)

∆(6)

∆(7)

∆1(1, 3, 4)

∆1(1, 2, 4)

∆2(1, 2, 4)
∆2(1, 3, 4)

∆(2)



Compoundly Weighted Filtration: the λ-complex

. Definition. λ-complex Kλ:
– sub-complex of the dual complex
– ∆ ∈ Kλ:

⋂
Si∈∆ Ri,λ 6= ∅

→ map λ to ∆

. Status of ∆ ∈ Kλ and boundary ∂S [λ]:

– singular:
⋂

Si∈∆ Si [λ] ∈ ∂S [λ]. Ex. ∆1,3

– regular :
⋂

Si∈∆ Ri,λ ∈ ∂S [λ]. Ex. ∆3,4

– interior :
⋂

Si∈∆ Ri,λ 6∈ ∂S [λ]. Ex. ∆2,3

. Classification of ∆(Tk):

∆1(2, 3, 4)

∆2(2, 3, 4)

∆1(2, 5, 6)

∆2(2, 5, 6)

∆2(4)

∆1(4)

∆(1)

∆(2)

∆(5)

∆(3)

∆(6)

∆(7)

singular regular interior

(1) ∆(T) ∈ CH(S),Gabriel, non dominated/dominant (ρ
∆(T)

, µ
∆(T)

] (µ
∆(T)

,+∞]

(2) ∆(T) ∈ CH(S),non Gabriel, non dominated/dominant (µ
∆(T)

,+∞]

(3) ∆(T) 6∈ CH(S) Gabriel, non dominated/dominant (ρ
∆(T)

, µ
∆(T)

] (µ
∆(T)

, µ∆(T)] (µ∆(T),+∞]

(4) ∆(T) 6∈ CH(S),non Gabriel, non dominated/dominant (µ
∆(T)

, µ∆(T)] (µ∆(T),+∞]

(5) ∆(T) 6∈ CH(S) Gabriel, dominant (ρ
∆(T)

, µ
∆(T)

] (µ
∆(T)

, ρ∆(T)] (ρ∆(T),+∞]

(6) ∆(T) 6∈ CH(S),non Gabriel, dominant (µ
∆(T)

, ρ∆(T)] (ρ∆(T),+∞]

(7) ∆(T) 6∈ CH(S) Gabriel, dominated (ρ
∆(T)

, µ
∆(T)

] (µ
∆(T)

, γ∆(T)] (γ∆(T),+∞]

(8) ∆(T) 6∈ CH(S),non Gabriel, dominated (µ
∆(T)

, γ∆(T)] (γ∆(T),+∞]



Algorithms

. Naively enumerating candidate tuples:
– a tuple of toleranced balls:

a pair, triple or quadruple
– candidate: possibly contributing simplices

. Computing the CW Dual Complex:
– Iterative construction of the skeleton,

from tetrahedra to vertices

. Time complexity: O(n(n2 + τ))
τ : number of candidate tuples

. Difficulties:
– comparing roots of degree four polynomial

checking that extremal TT balls are conflict-free
– computing the dual of non connected Voronoi region:

disambiguating the neighborhood of dual simplices
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Multi-scale Analysis of Toleranced Models:
Protein Contact History Encoded in the Hasse Diagram

p1[λ]

p3[λ]

p2[λ]

(i) (ii)

(iii)

iA iBiC

p1[λ]

p1[λ]

p2[λ]

p2[λ]

p3[λ]

p3[λ]

λ = 0

λC ∼ .9

λB ∼ .4

p1 p2 p3

λA ∼ .1

(iC)

(iB)

(iA)

λ = 1

λ

p1 p2

p3

p1 p2

p3

p1 p2

Skeleton graphs

p1 p3

. Red-blue bicolor setting: red proteins are types singled out (e.g. TAP)

. Protein contact history: Hasse diagram

. Finite set of topologies: encoded into a Hasse diagram
– Birth and death of a complex
– Topological stability of a complex s(c) = λd(C)− λb(C)

. Computation: via intersection of Voronoi restrictions



Voratom: Assessing Contacts
in the Toleranced Model of a Large Assembly

. 3 steps:
– Building occupancy volumes
– Building a Toleranced Model
– Inferring the Hasse diagram encoding protein contacts

VIDEO/voratom-y-complex-long.mpeg

Nup120

Nup133

Nup84



Toleranced Models for the NPC

. Input: 30 probability density maps from Sali et al.

. Output: 456 toleranced proteins

. Rationale:
→ assign protein instances to pronounced local maxima of the maps

. Geometry of instances:
– four canonical shapes
– controlling r +

i − r−i : w.r.t volume estimated from the sequence

Sec13

Pom152

Nup84

Nup120

Nup133

Nup84

(i) Canonical shapes (ii) NPC at λ = 0 (iii) NPC at λ = 1



Stopping the Growth Process
Matching the Uncertainties on the Input Data

. Uncertainty of a density map: Volume of voxels with probability>0
Stoichiometry×Reference volume

Probability density maps sorted by molecular weight



Three Analysis of the Toleranced Model of an Assembly

. Local:

– Tracking copies of sub-complexes in the assembly
→ Hasse diagram

. Global:

– Inspecting pairwise protein contacts
→ Contact probabilities

– Controlling the volume of evolving complexes
→ Volume ratio



Putative Models of Sub-complexes: the Y-complex
. Symmetric core of the NPC

Pom52,Pom34,Ndc1

Nup133,Nup84,Nup145C

Sec13,Nup120,Nup85,Seh1

Nic96,Nup192,Nup188,Nup157,Nup170

Nsp1,Nup49,Nup57

Pore membrane

Coat nups

Adapter nups

Channel nups

.Ref: Blobel et al; Cell; 2007

. The Y-complex: pairwise contacts

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

.Ref: Blobel et al; Nature SMB; 2009

. Y-based head-to-tail ring vs. upward-downward pointing

Cytoplasm

Nucleus

Spoke

Half-spoke

.Ref: Seo et al; PNAS; 2009

.Ref: Brohawn, Schwarz; Nature MSB; 2009

⇒ Bridging the gap between both classes of models?



Assessment w.r.t. a Set of Protein Types: Isolated Copies
Geometry, Topology, Biochemistry

. Input:
– Toleranced model
– T : set of proteins types, the red proteins (types involved in a sub-complex)

. Output, overall assembly:
– number of isolated copies: symmetry analysis
– their topological stability: death date - birth date (cf α-shape demo)

. B: closure of the 2 rings; C: painting Nup133 in blue



Closure of the Two Rings Involving Y -complexes:
Pairwise Contacts

. The TOM supports Blobel’s hypothesis

λ = 0

λ = 0.66

Events accounting for the closure

9 (Nup133, Nup85) λ ∈ [0.09, 0.70]
5 (Nup84, Nup85) λ ∈ [0.52, 0.69]
1 (Nup133, Nup120) λ = 0
1 (Nup84, Nup120) λ = 0.06

Nup85 involved in 14 / 16 contacts

.Inner structure of the Y-complexes into two sub-units

Density maps: contour plot; Hasse diagram per sub-unit

(Nup84, Nup145C, Nup133)(Nup120, Nup85, Seh1)



Three Analysis of the Toleranced Model of an Assembly

. Local:

– Tracking copies of sub-complexes in the assembly
→ Hasse diagram

. Global:

– Inspecting pairwise protein contacts
→ Contact probabilities

– Controlling the volume of merging complexes
→ Volume ratio



Contact Frequencies versus Contact Probabilities:
Definitions

. Contact frequency fij from Sali et al
– Given N optimized bead models of the NPC:

fij : fraction of the N models with at least one contact (Pi ,Pj)

. Contact probability p
(k)
ij

– Consider:
the Hasse diagram for λ ∈ [0, λmax]
a stoichiometry k ≥ 1

– Define: λk(Pi ,Pj): smallest λ
∃ k contacts between Pi and Pj

– Contact proba.: p
(1)
ij = λmax − λ1(Pi ,Pj)/λmax

– Contact curve: p
(k)
ij as a function of k

λ = 0

λ1(P1, P3) ∼ .9

p1 p3

λmax = 1

λ

p11,3 ∼ 1− 0.9
1 = 0.1

khigh = kdrop
δp

(kdrop)
ij

= klow

p
(khigh)
ij = p

(kdrop)
ij



Contact Frequencies versus Contact Probabilities:
Results

. Under-represented contact
in Sali et al:
Nup84− Nup60 : fij = 0.07

. Over-represented contact
in Sali et al:
Nup192− Pom152 : fij = 0.98

. Corresponding
contact curve:
Nup84− Nup60 : p

(4)
ij = 1

khigh = kdrop

δp
(kdrop)
ij

= klow

p
(khigh)
ij = p

(kdrop)
ij

. Corresponding
contact curve:
Nup192− Pom152 : p

(1)
ij = 0

p
(khigh)
ij = p

(kdrop)
ij = 0



Three Analysis of the Toleranced Model of an Assembly

. Local:

– Tracking copies of sub-complexes in the assembly
→ Hasse diagram

. Global:

– Inspecting pairwise protein contacts
→ Contact probabilities

– Controlling the volume of merging complexes
→ Volume ratio



Assessment w.r.t. a Set of Protein Types:
Volume Ratios

. Definition:
– Reference volume of

a protein: volume estimated from its sequence of amino-acids
a complex: sum of reference volumes of its constituting proteins

. Output, per complex:
– volume ratio: volume occupied vs. expected volume

. Output, in conjunction with the Hasse diagram:
– curve: evolution of volume ratio of evolving complexes

Complexes in the Hasse diagram: variation of the volume ratio as a function of λ

.Ref: Harpaz, Gerstein, Chothia; Structure; 1994
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Assessing a Toleranced Model with Respect to a
High-resolution Structural Model

Assembly Complex: skeleton graph

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

Template: skeleton graph

Matching between a Complex and a Template:
Protein instance ↔ Protein type

Contact ↔ Contact

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

Exact superposition:
Perfect Matching

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

1 missing edge4 extra edges

Approximate superposition:
Alternate Matching



Assessment w.r.t. a High-resolution Structural Model:
Contact Analysis

. Input: two skeleton graphs
– template Gt , the red proteins : contacts within an atomic resolution model
– complex GC : skeleton graph of a complex of a node of the Hasse diagram

. Output: graph comparison, complex GC versus template Gt :
(common/missing/extra) × (proteins/contacts)

. Graph theory problems:
Perfect Matching: All Maximal Common Induced Sub-graphs (MCIS)
Alternate Matching: All Maximal Common Edge Sub-graphs (MCES)

GC GC

p2

p3

p4

c1

c2

c3

c4

c1 c2

(p1, c1) (p2, c2)

p3

p4

GC

Gt|C

p1

p2

(p4, c1) (p3, c2)

p1

(p2, c2)

(p4, c4)
(p3, c3)

p1

(p2, c2)

(p1, c1)

p2

p3

p4

A

A′

A
A

c1

c2

c3

c4

(p4, c4)

(p3, c3)

Perfect Matching Missing Protein Types Missing and Extra Contacts

Gt|C
Gt|C

.Ref: Cazals, Karande; Theoretical Computer Science; 349 (3), 2005

.Ref: Koch; Theoretical Computer Science; 250 (1-2), 2001



A New Template for the T -complex

. T-complex and its skeletons
Note the filaments

Gt(T ) Gt(Tnew)Gt(Tcomp)

T -leg: (Nup49, Nup57) T -core: (Nic96, Nsp1)

Nic96

Nup57Nup49

Nsp1

Nic96

Nup57Nup49

Nsp1

Nic96

Nup57Nup49

Nsp1

Nic96

Nsp1

Nup49 Nup57

. Putative positions
wrt the inner ring of the NPC

. Perfect Matching:
– Gt(T ): 0 matching with T -complex
→ Extra contacts (Nup49, Nsp1)

– Gt(Tcomp): 2 matching with T -complex
→ Missing contacts (Nup57, Nic96)

– Gt(Tnew ): 10 matching with T -complex
→ Best coherence with toleranced model

. Contact analysis: asymmetric role of Nup49 and Nup57; new template
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Conclusion and Outlook

. Compoundly Weighted Voronoi diagram
– Geometric and topological analysis
– Output sensitive algorithm
– λ-complex and its computation

. Toleranced models and their applications
– Representing models with uncertainties
– Bridging the gap global - fuzzy versus local - atomic resolution models

. Reconstruction assessment
– A panoply of tools to perform the assessment of large protein assembly models
– . . . of interest in a virtuous loop reconstruction – assessment

. Software
– Algorithms to compute the CW diagram and the λ-complex (CGAL-style)
– A generic C++ library for modeling and assessing large assemblies

∆1(2, 3, 4)

∆2(2, 3, 4)

∆1(2, 5, 6)

∆2(2, 5, 6)

∆2(4)

∆1(4)

∆(1)

∆(5)

∆(3)

∆(6)

∆(7)

∆1(1, 3, 4)

∆1(1, 2, 4)

∆2(1, 2, 4)
∆2(1, 3, 4)

∆(2)

p1[λ]

p3[λ]

p2[λ]

(i) (ii)

(iii)

iA iBiC

p1[λ]

p1[λ]

p2[λ]

p2[λ]

p3[λ]

p3[λ]

λ = 0

λC ∼ .9

λB ∼ .4

p1 p2 p3

λA ∼ .1

(iC)

(iB)

(iA)

λ = 1

λ

p1 p2

p3

p1 p2

p3

p1 p2

Skeleton graphs

p1 p3

Nup120

Sec13

Nup145C

Nup85

Seh1

Nup84

Nup133

1 missing edge4 extra edges



Perspectives

. Compoundly Weighted Voronoi diagram
– Study of homological features (Euler characteristic)
– Faster computation (Incremental algorithm)

. Toleranced models
– Enhanced approximation of protein shapes
– Interest of other non linear growth models (e.g Mobius)

. Applications
– Toleranced models in a different context (e.g, cryoEM or crystal structures)
– Reconstruction by data integration and model selection



Toleranced Models for Large Assemblies: Positioning

. Methodology: modeling with uncertainties
– Toleranced models: continuum of shapes vs fixed shapes
– Topological and geometric stability assessment (curved α-shapes)

. Applications to toleranced complexes
– Protein types (contact probabilities)
– Protein complexes (morphology, contacts)

h
t
t
p
:
/
/
t
e
a
m
.
i
n
r
i
a
.
f
r
/
a
b
s

• Assessment with TOM

– For Protein types

– For Protein complexes

• Model selection

Data processing

• Stoichiometry determination

• Connectivity inference

• Interface modeling

• Approximating complex shapes

• Mining density maps

• . . .

Experimental data

• Mass spectrometry

• TAP, Y2H, etc

• Collision X section

• Cryo-EM

• High-res. structures

• Immuno-EM

• dots

Fuzzy models

• Qualitative results

• Not mechanistical

Reconstruction

• IMP

• Bayesian
approaches

• . . .

http://team.inria.fr/abs
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PART 1:Connectivity Inference from Native Mass Spectrometry Data

PART 2:Building Coarse Grain Models

PART 3:Handling uncertainties in Macro-molecular Assembly Models
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Analyzing Landscapes

. Energy landscape

E

I Input: point set + energies

I Output: minima, saddles,
attraction basins

. Density estimates

Cluster one Cluster two

I Input: point set

I Output: one cluster per
significant local maximum

. Common points:

I Input consists of a set of points / conformations

I The elevation defines a landscape

I Neighbors used to define a graph / estimate a density



Landscapes and Peaks: What is a Peak !?

. Key features in a landscape: lakes , peaks, passes
– local minima, maxima, and saddles of the elevation function

. Defining a peak . . . a matter of scales
– prominence: closest distance to the nearest local maximum with higher elevation
– culminance: elevation drop to the saddle leading to a higher local maximum

. Some well known peaks have tame statistics: the Norden peak
– fourth highest peak of the Mont Rose massif, 4609 meters
– prominence: 575 meters; culminance: 94 meters

.Ref:
http://www.zermatt.ch/en/page.cfm/zermatt_matterhorn/4000er/nordend

http://www.zermatt.ch/en/page.cfm/zermatt_matterhorn/4000er/nordend
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BLN69: a Simplified Protein Model
. Description:

– Three types of Beads: : hydrophobic(B), hydrophylic(L) and neutral(N)
– Configuration space of intermediate dimension: 207
– Challenging: frustrated system
– Exhaustively studied: DB of ∼ 450k critical points

VBLN =
1

2
· Kr

N−1∑
i=1

(Ri,i+1 − Re )2 +
1

2
K0

N−2∑
i=1

(θi − θe )2 + ε ·
N−3∑
i=1

[Ai (1 + cosφi ) + Bi (1 + 3 cosφi )]

+4ε

N−2∑
i=1

N∑
j=i+2

·Cij [(
σ

Ri,j

)12 − Dij (
σ

Ri,j

)6]

. Disconnectivity graph describing merge events between basins

.Ref: Oakley, Wales, Johnston, J. Phys. Chem., 2011



Sampling the PEL using Numerical Methods
The Example of Basin-Hoppinp

. Basin-hopping and the basin hopping transform
– Random walk in the space of local minima
– Requires a move set and an acceptance test (cf Metropolis)

and the ability to descend the gradient

E

C

.Ref: Schön and Jansen, Prediction, determination and validation of

phase diagrams via the global study of energy landscapes, Int’ J. of

Materials Research, 2009



Landscape Exploration:
Transition based Rapidly Growing Random Tree (T-RRT)

. Algorithm growing a random tree favoring yet unexplored regions
– node to be extended selection: Voronoi bias
– node extension: interpolation + Metropolis criterion (+temperature tuning)

pn
δ

pe

T

pr C
pr

pn

.Ref: LaValle, Kuffner, IEEE ICRA 2000

.Ref: Jaillet, Corcho, Pérez, Cortés, J. Comp. Chem, 2011
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Representing Sampled Landscapes

. Ground space: conformational space

. Elevation: potential energy / score

. Nearest neighbor graph (NNG)
– connect each sample to its k-nearest neighbors (l-RMSD)
– faces the curse of dimensionality . . . yet, strategies to fudge around

data structures to handle NN queries in metric spaces

. Pseudo-gradient vector field: oriented NNG i.e.
connect each sample to its highest neighbor

E

pj

m1 : σ(0)

pi : σ
(1)

plpk : σ(1)

m2 : σ(0)



Energy Landscape Analysis: Morse Sketching
. Input:

I a collection of conformations {ci}
I or better: samples and the associated local minima. But . . .

I requires the gradient of the energy / score
I or derivative free optimization methods (CMA-ES)

. Output:

I Transition graph connecting minima and saddles

I Basins associated with local minima

. Method:

I Simulate a gradient descent from each point

I Identify ridges across basins, aka bifurcations



Critical Points and Stable Manifolds
Illustrations for functions z = f (x , y)

. Following the pseudo-gradient yields:

I Local minima

I Stable manifold of local minima: points flowing to local minima

I Index one saddles

. Himmelblau
(4,4,1)

. Rastrigin
(121,220,100)

. Gauss6a
(3,5,3)



Landscape Analysis at a Glimpse:
The Himmelblau function: f (x , y) = (x2 + y − 11)2 + (x + y2 − 7)2



Sweeping a landscape yields:
Persistence Diagram and the Disconnectivity Graph

. Toy noisy landscape

. Persistence diagram for sub-level sets

 0
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. Disconnectivity graph:
noisy and simplified
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.Ref: Chazal et al, ACM SoCG; 2011

.Ref: Cazals, Cohen-Steiner; Comput. Geometry Th. & Appl.; 2011



Morse Theory:
Destruction and Creation of Homology Generators

Passing this (index one) saddle:

destroys order 0 homology i.e.

kills one connected component

Passing this (index one) saddle:

creates order 1 homology i.e.

creates one loop around the

mountain



Persistence, Simplification and Transition Paths (min, σ,min)

a.k.a. the re-routing algorithm

. Landscape simplification from the Morse-Smale chain complex

σ0

m1

m2

σ1

(c)
(a) (b)
(d)

E

E

m0

m0

σ2

m1

σ1

m2

m0

σ0

σ2

σ0

m2

m0

σ0

σ2

– The cc of a min dies upon
encountering the nearest saddle

– News paths upon simplif: (min, σ,min)
min: minima accessible from dead saddle

. Key operations: multiplexing and redistribution of stable manifolds

a

b c

d

e f

a

b c

d

e f

Before After

. Simplifying: reverting the flow
→ re-routing paths (in codimension one)

. Output:
– simplified Hasse diagram / persistence diagram
– stable basins partitioning the samples
– transition paths across stable basins

.Ref: Cazals, Cohen-Steiner; Comput. Geometry Th. & Appl.; 2011



BLN69: Persistence reveals Novel Local Minima

. Selection of local minima mi of interest by energy and persistence:
– Range on energy: mi ∈ sub-level set E ≤ h

NB: High energies unlikely at room temperature
– Upper bound on persistence: barriers of max. height δh

. Persistence of the 458,082 local minima in BLN69-all

– Inset: range query on energy and persistence
40 minima in BLN69-all with energy E < −104ε
The 10 most persistent minima: 6 known + 4 new ones

.Ref: Cazals et al, under revision



BLN69: Dimensionality Reduction Reveals
the Relative Positions of Low Handing Minima

. A three step process:

I Step 0: select local minima of interest

I Step 1: compute pairwise distances (lRMSD in ambiant space, or
cumulative lRMSD on the graph of nearest neighbors

I Step 2: apply dimensionality reduction, say Multidimensional Scaling

33250

1
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.Ref: Cazals et al, under revision
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Comparing (Sampled) Energy Landscapes: Motivation

. Comparing (sampled) landscapes:
– Assessing the coherence of two force fields for a given system (atomic,CG)
– Comparing two related systems: protein wild type/mutated
– Comparing two simulations: different initial conditions, algorithms

E

C

E

C

s1 s2

d1 d2 d3 d4

. Idea: find a mapping between
basins considering

I the similarity between the
native states (one per basin)

I the coherence between the
volumes of the basins (their
probabilities)

. NB: Terminology: sampled potential energy landscape:
vertex weighted transition graph associated with a simulation,
i.e. the subgraph of the whole transition graph revealed by the simulation.



Comparing (Sampled) Energy Landscapes
via Their Transition Graphs

. Input: given a source landscape PELs and a demand landscape PELd

. Sampled landscape modeled as a transition graph:
– One conformation per basin: si ∈ PELs , dj ∈ PELd

+ a metric dC between conformations
– One probability per basin

w
(s)
i =

∫
Bi

(exp −V (c)
kBT

dc)/Z ,
∑

i w
(s)
i=1,...,ns

= 1

– Transitions between basins

. Output: transport plan i.e. flow quantities fij
fij : amount (of probability) flowing from basin i ∈ PELs to basin j ∈ PELd

Source landscape

Demand landscape

si

fij

dj

NB: the transport plan
is a mapping between
basins; it induces a
transport cost (a
distance) between
landscapes.



Coding a Sampled Landscape into a Transition Graph

. Step 1: Morse sketching yields a transition graph:

I Basins and their weights

I Transitions between these basins

. Step 2: landscape simplification with topological persistence:
merge basins with non-significant barrier heights into more stable basins

. Step 3: assign masses to the remaining minima: yields a vertex weighted
transition graph



Comparisons without Connectivity Constraints:
the Earth Mover Distance yields a Linear Program

. Consider two landscapes: PELs with ns basins, PELd with nd basins

E

C
s1 s2

s1 s2

d1 d2 d3 d4

PELs PELdE

C
d1 d2 d3 d4

. Problem Earth-Mover-Distance (EMD):

find the transport plan of minimum cost, i.e. solution of the following linear program

LP


Cost: Min

∑
i=1,...,ns ,j=1,...,nd

fij × dC(si , dj )∑
i=1,...,ns

fij = w
(d)
j ∀j ∈ 1, . . . , nd ,∑

j=1,...,nd
fij ≤ w

(s)
i ∀i ∈ 1, . . . , ns ,

fij ≥ 0 ∀i ∈ 1, . . . , ns , ∀j ∈ 1, . . . , nd

. Pros and cons:
– Information used: location of minima, weight of basins
– Linear program: solved in polynomial time
– Connectivity information not used

.Ref: Rubner, Tomasi, Guibas, IJCV, 2000
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Comparisons involving Connectivity Constraints

. EMD: may violate the connectivity constraints
s1

s2

s3

s4

d1

d2

d3

d4

. Hardness

OPTIMUM

S

criterion

. Problem Earth-Mover-Distance with connectivity constraints (EMD-CC):
Find the least cost transport plan such that every connected subgraph of PELs

exports towards a connected subgraph of PELd

. Our results
– Decision problem is NP-complete (reduction: 3-partition problem)
– Optimization problem is not in APX

If P 6= NP: no polynomial algorithm with constant approx factor
– Yet: greedy polynomial algorithm producing admissible solutions

. Algorithms Alg-EMD-LP versus Alg-EMD-CCC-G:
Alg-EMD-LP: fast, but may violate connectivity constraints
Alg-EMD-CCC-G: slower, but respects connectivity constraints

.Ref: Cazals, Mazauric; submitted
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BLN69: Alg-EMD-LP and Alg-EMD-CCC-G

Connectivity versus Demand Satisfaction

. Protocol:
– for each of the 10 lowest local minima: one simulation of 104 samples

– data processing yields transition graphs of varying size
#V ∈ [27, 439],#E ∈ [439, 1672]

– for each pair of landscapes (A,B) out of the 45 pairs:
computation of Alg-EMD-LP(A,B),
Alg-EMD-CCC-G(A,B),Alg-EMD-CCC-G(B,A)

. Connectivity and demand satisfaction:
– Alg-EMD-LP violates the connectivity constraints: worst-cases are

constraint satisfied for 41% of the source vertices (100% : perfect)
constraint satisfied for 24% of the source edges (100% : perfect)

– Alg-EMD-CCC-G almost saturates the demand
worst-case is 99.23% of the demand



BLN69: Alg-EMD-LP and Alg-EMD-CCC-G

Costs

. Alg-EMD-LP and the two Alg-EMD-CCC-G yield identical costs:
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I Three comparisons:

Alg-EMD-LP(A,B)
Alg-EMD-CCC-G(A,B),Alg-EMD-CCC-G(B,A)

I Linear correlations coeffs ∼ 0.99

I Alg-EMD-CCC-G does not exhibit
significant asymmetry on these cases

. Consistence with the relative positions of the local minima

Min distance:

0.09 for (12760, 1134)
Max distance:
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0.19 for (6, 142)
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