

## Description of molecules represented by their 3D structures. Descide whether the molecules will form a complex (interact/bind). Determine the binding affinity. Deduce function.



## Biological Motivation Proteins act by interaction – assembly and disassembly of multimolecular complexes. Drug development: Disruption of multi-molecular interactions. Design of protein-drug complexes. Structural Elucidation of the Large Molecular Machines of the Cell – Ribosome, Proteasome etc.

H.J. Wolfson -- INRIA



## Forces governing biomolecular recognition

#### Depend on the molecules involved and the solvent.

- Van der Waals.
- · Electrostatics.
- Hydrophobic contacts.
- Hydrogen bonds
- Salt bridges .. etc.

All interactions act at short ranges.

Implies that a necessary condition for tight binding is molecular surface complementarity.

H.J. Wolfson -- INRIA

Dec 2014

#### **Geometric Docking Algorithms**

- Based on the assumption of shape complementarity between the participating molecules.
- Molecular surface complementarity proteinprotein, protein-ligand, (protein - drug).
- Hydrogen donor/acceptor complementarity protein-drug.
- <u>Remark</u>: usually "protein" here can be replaced by "DNA" or "RNA" as well.

H.J. Wolfson -- INRIA

Dec 2014

#### Issues to be examined when evaluating docking methods

- Rigid docking vs Flexible docking :
- If the method allows flexibility:
  - Is flexibility allowed for ligand only, receptor only or both ?
    No. of flexible bonds allowed and the cost of adding additional flexibility.
- Does the method require prior knowledge of the active site ?
- Performance in "unbound" docking experiments.
- Speed ability to explore large libraries.

H.J. Wolfson -- INRIA



#### Unbound Docking

- In the unbound docking we are given 2 molecules in their native conformation.
- · The goal is to find the correct association.
- Problems: conformational changes (side-chain and backbone movements), experimental errors in the structures.

H.J. Wolfson -- INRIA









Detect a <u>3D rigid transformation</u> of one of the molecules that docks it to the other maximal interface and negligent shape penetration.

H.J. Wolfson -- INRIA











#### Connolly's MS algorithm - cont.

- Convex, concave and saddle patches according to the no. of contact points between the surface atoms and the probe ball.
- Outputs points+normals according to the required sampling density (e.g. 10 pts/A<sup>2</sup>).

H.J. Wolfson -- INRIA

Dec 2014

#### Critical points based on Connolly rep. (Lin, Wolfson, Nussinov, Proteins 1994)

- Define a single point+normal for each patch.
- Convex-caps, concave-pits, saddle belt.

H.J. Wolfson -- INRIA

#### Active Site Focusing (optional)

There are major differences in the interactions of different types of molecules (protease-inhibitor, antibody-antigen, protein drug). Studies have shown the presence of energetic *hot spots* in the active sites of the molecules.

**Protease/inhibitor** – select patches with high enrichment of hot spot residues (Ser,Gly,Asp and His for protease; and Arg,Lys,Leu,Cys and Pro for protease inhibitor).

Antibody/antigen – 1.detect CDRs of the antibody. 2. select hot spot patches (Tyr,Asp,Asn,Glu,Ser and Trp for antibody; and Arg,Lys,Asn and Asp for antigen)

Protein/drug – select largest protein cavity (highest value of average shape function for the patch)

#### **Local Feature Extraction**

- Connolly points + normals dense.
- Lin et al. points sparser.
- Knobs holes (Connolly; Norel-Nusinov-Wolfson) – sparse crude curvature evaluation.

H.J. Wolfson -- INRIA





#### Patch Detection by Segmentation

- Construct a sub-graph for each type of points: knobs, holes, flats. For example  $G_{knob}$  will include all surface points that are knobs and an edge exists between two 'knobs' if they belong to the same atom.
- Compute connected components of every subgraph.
- Problem: the sizes of the connected components can vary.
- Solution: apply 'split' and 'merge' routines.

H.J. Wolfson -- INRIA

Dec 2014

# <section-header><complex-block>





H.J. Wolfson - INRIA





## Hash Table Key is Invariant to the Rigid (Euclidean) Transformation

- Euclidean and geodesic distances between the points: dE, dG
- The angles *a*, β between the [a,b] segment and the normals
- The torsion angle  $\boldsymbol{\omega}$  between the planes



#### Pose Clustering, Clash Detection & Scoring Stage

- Since local features are matched, we usually have multiple instances of "almost" the same transformation.
- Some transformations may induce steric clashes.
- Pose clustering, steric clash filtering and scoring are applied to the transformation list.

H.J. Wolfson -- INRIA











| Predictor group                                                                                                                                                   | TOS                                                                                                                                   | TOP                                                       | T10                                                        | T11                                                                                         | T12                                                                                                         | T13                                                                                                                                 | T34                                                                                                                              | T18                                                                  | T19                                                                                                         | Predictor summar                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| All a strate                                                                                                                                                      |                                                                                                                                       | 0                                                         |                                                            |                                                                                             | -                                                                                                           |                                                                                                                                     |                                                                                                                                  |                                                                      |                                                                                                             | diametowne                                                                                                                                            |
| This Manager                                                                                                                                                      | -                                                                                                                                     |                                                           |                                                            |                                                                                             | -                                                                                                           |                                                                                                                                     | -                                                                                                                                | -                                                                    | -                                                                                                           | alure in                                                                                                                                              |
| Wend                                                                                                                                                              |                                                                                                                                       | 8                                                         | 2                                                          | · ·                                                                                         | <u> </u>                                                                                                    | <u></u>                                                                                                                             |                                                                                                                                  | <u> </u>                                                             | <u></u>                                                                                                     | 1000                                                                                                                                                  |
| Bates                                                                                                                                                             |                                                                                                                                       | ŏ                                                         |                                                            |                                                                                             |                                                                                                             | 0                                                                                                                                   |                                                                                                                                  |                                                                      |                                                                                                             | 1000                                                                                                                                                  |
| Bahor                                                                                                                                                             |                                                                                                                                       | ŏ                                                         | 0                                                          |                                                                                             |                                                                                                             |                                                                                                                                     |                                                                                                                                  | 0                                                                    |                                                                                                             | 6/0mm/4mm                                                                                                                                             |
| Camacho                                                                                                                                                           |                                                                                                                                       | ŏ                                                         | õ                                                          |                                                                                             |                                                                                                             |                                                                                                                                     |                                                                                                                                  | -                                                                    |                                                                                                             | A11000/10000                                                                                                                                          |
| Grav                                                                                                                                                              |                                                                                                                                       | _                                                         | _                                                          |                                                                                             |                                                                                                             | 0                                                                                                                                   | 0                                                                                                                                |                                                                      |                                                                                                             | \$23mm(),mmm                                                                                                                                          |
| Bussia                                                                                                                                                            |                                                                                                                                       | _                                                         |                                                            |                                                                                             | 0                                                                                                           | -                                                                                                                                   |                                                                                                                                  | - ñ                                                                  |                                                                                                             | 52100/2000                                                                                                                                            |
| CharDen                                                                                                                                                           |                                                                                                                                       | 0                                                         |                                                            |                                                                                             |                                                                                                             |                                                                                                                                     |                                                                                                                                  | - iii                                                                |                                                                                                             | \$10mm/3 mmm                                                                                                                                          |
| Stendere                                                                                                                                                          |                                                                                                                                       | õ                                                         | ő                                                          |                                                                                             |                                                                                                             | 0                                                                                                                                   |                                                                                                                                  | - ŭ                                                                  |                                                                                                             | 5/2**                                                                                                                                                 |
| Einenstein                                                                                                                                                        |                                                                                                                                       | ŏ                                                         | ő                                                          |                                                                                             |                                                                                                             | ő                                                                                                                                   |                                                                                                                                  | - ă                                                                  |                                                                                                             | 4/1==/2===                                                                                                                                            |
| Ditchie                                                                                                                                                           |                                                                                                                                       | ň                                                         | ň                                                          |                                                                                             |                                                                                                             |                                                                                                                                     |                                                                                                                                  | - iii                                                                | ě.                                                                                                          | 4/100/1000                                                                                                                                            |
| Zhou                                                                                                                                                              | -                                                                                                                                     | _                                                         | õ                                                          |                                                                                             | ***                                                                                                         |                                                                                                                                     | -                                                                                                                                |                                                                      | ŏ                                                                                                           | 4/1-1/1                                                                                                                                               |
| Ten Elock                                                                                                                                                         | 0                                                                                                                                     | 0                                                         | 0                                                          |                                                                                             |                                                                                                             |                                                                                                                                     |                                                                                                                                  |                                                                      | ö                                                                                                           | 3/1=2/2===                                                                                                                                            |
| Zecharias                                                                                                                                                         | ÷.                                                                                                                                    | ö                                                         | _                                                          | _                                                                                           | _                                                                                                           |                                                                                                                                     |                                                                                                                                  | 0                                                                    |                                                                                                             | 3/2**/1***                                                                                                                                            |
| Valencia                                                                                                                                                          |                                                                                                                                       | ö                                                         | 0                                                          |                                                                                             |                                                                                                             |                                                                                                                                     | 0                                                                                                                                | 0                                                                    |                                                                                                             | 3                                                                                                                                                     |
| Valuer                                                                                                                                                            |                                                                                                                                       | _                                                         | 0                                                          |                                                                                             |                                                                                                             |                                                                                                                                     |                                                                                                                                  | -                                                                    | 0                                                                                                           | 2/2***                                                                                                                                                |
| Unevana                                                                                                                                                           | 0                                                                                                                                     | 0                                                         | 0                                                          | -                                                                                           |                                                                                                             | 0                                                                                                                                   | 0                                                                                                                                | 0                                                                    | 0                                                                                                           | 2/1***                                                                                                                                                |
| Kennessis                                                                                                                                                         |                                                                                                                                       |                                                           | 0                                                          |                                                                                             |                                                                                                             | 0                                                                                                                                   | 0                                                                                                                                |                                                                      | 0                                                                                                           | 5/1                                                                                                                                                   |
| Fano                                                                                                                                                              |                                                                                                                                       |                                                           | 0                                                          |                                                                                             | 0                                                                                                           | 0                                                                                                                                   | 0                                                                                                                                | 0                                                                    | 0                                                                                                           | 1                                                                                                                                                     |
| Gottschalk                                                                                                                                                        |                                                                                                                                       |                                                           |                                                            |                                                                                             |                                                                                                             |                                                                                                                                     |                                                                                                                                  |                                                                      |                                                                                                             | 1                                                                                                                                                     |
| Palma                                                                                                                                                             | 0                                                                                                                                     | 0                                                         | 0                                                          |                                                                                             | 0                                                                                                           | 0                                                                                                                                   | 0                                                                                                                                | 0                                                                    | 0                                                                                                           | 1                                                                                                                                                     |
| Poupon                                                                                                                                                            |                                                                                                                                       |                                                           |                                                            |                                                                                             | 0                                                                                                           |                                                                                                                                     | 0                                                                                                                                | 0                                                                    | 0                                                                                                           | 1                                                                                                                                                     |
| Wong                                                                                                                                                              | 0                                                                                                                                     | 0                                                         | 0                                                          |                                                                                             | 0                                                                                                           | 0                                                                                                                                   | 0                                                                                                                                | 0                                                                    | 0                                                                                                           | 1                                                                                                                                                     |
| Torot support                                                                                                                                                     | 11/7**/2***                                                                                                                           | 1                                                         | 4/1***                                                     | 15/7**                                                                                      | 16/11****                                                                                                   | 10/2**/4***                                                                                                                         | 1477-025-0                                                                                                                       | 340**                                                                | 10(4**/1***                                                                                                 |                                                                                                                                                       |
| This table summa-<br>target.<br>Column 1 hats the<br>summarizes the re<br>V indicates that a<br>least one of the sy<br>scenracy, and ***<br>range used to real to | rines the results<br>name of the pri-<br>seults per predi-<br>one of the sub-<br>builted predict<br>'indicates that<br>the prediction | i obtais<br>dur gr<br>itted p<br>tione v<br>at leas<br>s. | investig<br>org, and<br>rediction<br>rat in th<br>t-one pr | I the gros<br>ator. The<br>"the botto<br>serves of<br>a screpts<br>edictics w<br>vertable p | pa thataulo<br>nant 9 colum<br>n row auno<br>acceptable q<br>hie range. '<br>rae of high o<br>redictions. ( | nitted on even<br>and last the resu-<br>nations the resu-<br>sality. '' indi-<br>states the<br>coursecy. See the<br>followed by the | ore predictions<br>the obtained for<br>the par target,<br>outes that no p<br>at at least one<br>o text as well<br>number of pre- | reach o<br>reach o<br>rediction<br>of the s<br>ar Bef. 1<br>Listions | Aable quality o<br>Ithe 9 targets:<br>a ware submitt<br>ubmitted pred<br>1 for the defini-<br>of medium and | rbetter for at least on<br>The right-most column<br>of. * indicates that a<br>intione was of medium<br>tion of the parameter<br>high accuracy denotes |







Dec 2014

#### **GRP94** molecule

There was no structure of grp94 protein. Homology modeling was used to predict a structure using another protein with 52% identity.



Recently the structure of grp94 was published. The RMSD between the crystal structure and the model is 1 30. HJ. Wolfson-INRIA Dec 2014 is 1.3A.

#### **GRP94** molecule

- There is a binding site for inhibitors between the helices.
- There is another cavity produced by a  $\beta$ -sheet on the opposite side.



#### Docking

- · PatchDock was applied to dock the two molecules, without any binding site constraints.
- Interestingly, the better scoring docking results were clustered in the two cavities:













#### Some PatchDock Publications

- D. Duhovny, R. Nussinov, H.J. Wolfson, *Efficient* Unbound Docking of Rigid Molecules, 2'nd Workshop on Algorithms in Bioinformatics (WABI'02), Sept. 2002, Lecture Notes in Computer Science 2452, pp. 185-200, Springer Verlag.
- D. Schneidman-Duhovny, et al., Taking Geometry to its Edge: Fast Unbound Rigid (and Hinge-bent) Docking, Proteins, 52, 107—112, (2003).
- D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H. J. Wolfson, PatchDock and SymmDock: servers for rigid and symmetric docking, Nuc. Acids Res., 33 (NAR, web server issue), W363—W367, (2005).

Dec 2014 H.J. Wolfson -- INRIA